Arythmies: focus, recommandation, consensus EHRA

Antiarythmiques EHRA 2025

Laurent Fauchier

Cardiologie. Pôle Cœur Thorax Vaisseaux Centre Hospitalier Universitaire Trousseau, Tours. France

Liens d'intérêt

Laurent Fauchier:

AstraZeneca, Bayer, BMS Pfizer,

Orateur ou consultant:

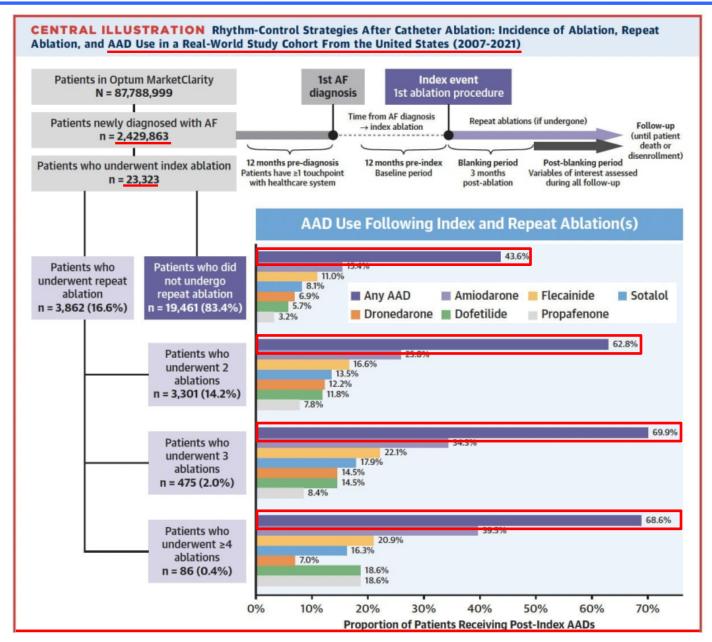
Boehringer Ingelheim, Boston Scientific,

Medtronic, Novartis, Novo Nordisk, Zoll

Practical compendium of antiarrhythmic drugs: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology

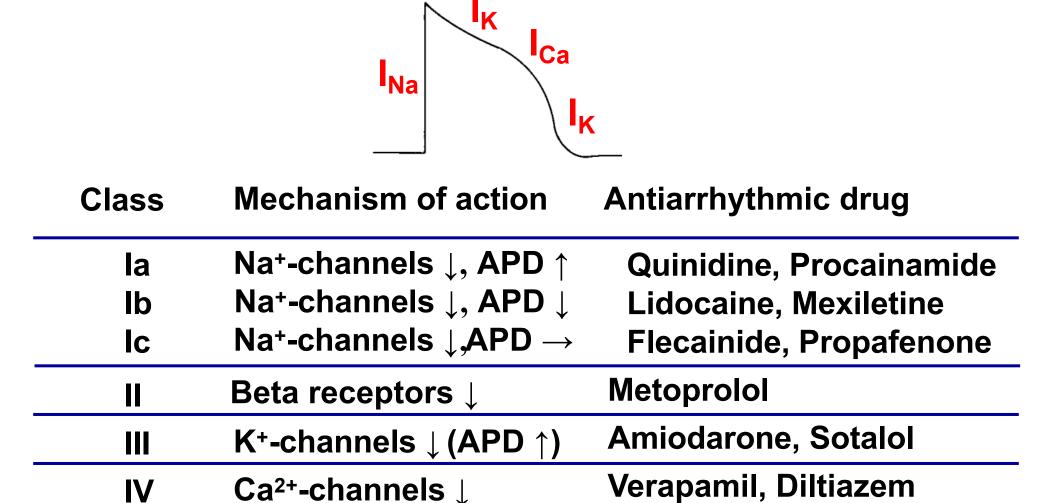
The EHRA "ABC" of AADs: Why Still I Need Them?

Appropriate therapy: AADs are often the *appropriate* and, in many cases, the sole therapy required for managing cardiac arrhythmias, including terminating arrhythmias during their initial presentation, addressing acute or incessant episodes, and treating patients who respond well to pharmacological treatment and prefer it over invasive procedures.


Backup therapy: AADs are used as a *backup* therapy when other primary treatments, such as ablation or CIEDs, are unavailable, poorly tolerated, particularly risky, contraindicated, or ineffective in preventing or terminating arrhythmia episodes or their consequences.

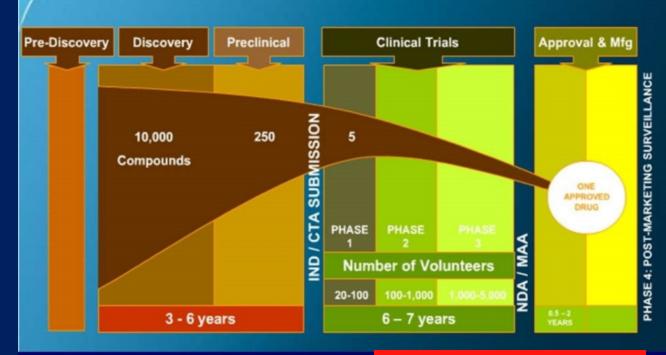
Complementary therapy: AADs serve as a valuable *complement* to other therapies, such as catheter ablation or CIEDs, by providing support during waiting periods, preparatory or postoperative phases, or by supplementing and enhancing their overall efficacy.

AADs, antiarrhythmic drug; CIED, cardiac implantable electronic device.


AADs are Appropriate, Backup, and Complementary Therapy

Only 0.9% undergone ablation!!!

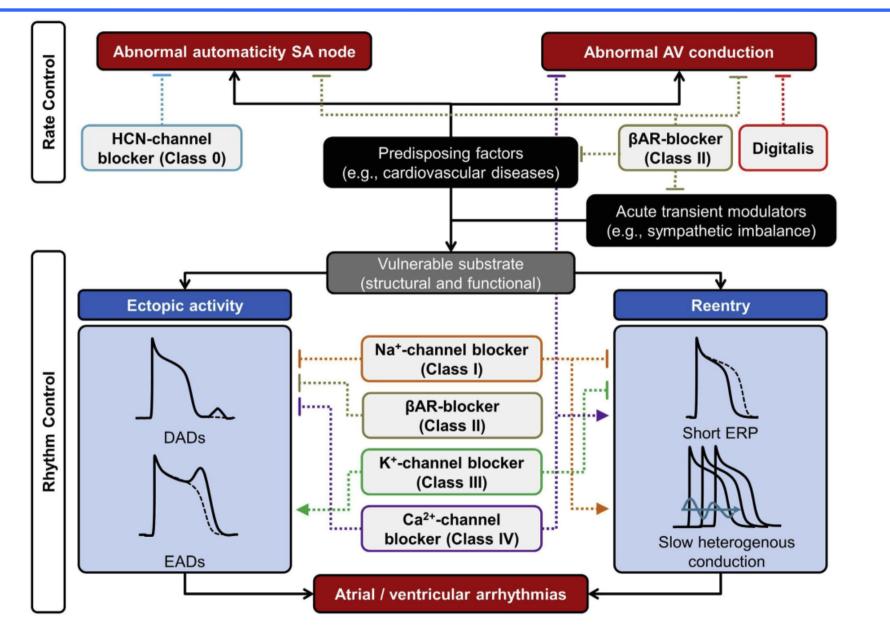
Saksena et al., JACC Clin Electrophysiol 2025


Classes of Antiarrhythmic Drugs (AADs) according to Vaughan Williams in 1975

Chronological overview of AA drugs

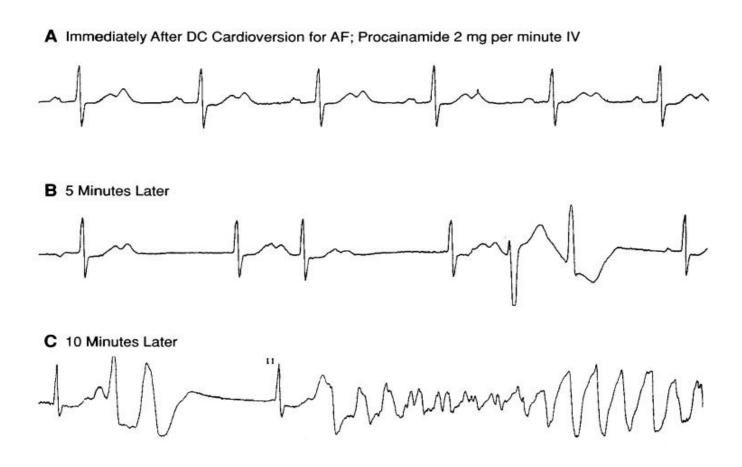
1749	Quinidine
1785	Digitalis
1936	Procainamide
1954	Disopyramide
1962	Beta-blocking agents
1972	Amiodarone
1978	Propafenone
1982	Flecainide
1984	Sotalol
1995	Ibutilide
1996	Dofetilide
1998	Azilimide
2010	Dronedarone

FROM BENCH TO BED


EHRA Classification of AADs in 2025: Part 1

Class	Subclass	Primary pharmacological target/action		Example of drugs				
HCN c	hannel blo	ckers						
0		HCN channel-mediated pacemaker current (I _f)	Ivabradine					
Voltag	Voltage-gated Na ⁺ channel blockers							
	Ia	Nav1.5 (I _{Na}) open-state (intermediate dissociation)	Ajmaline, disopyramide	e ^b , procainamide ^b , quinidi	ne/hydroquinidine ^{b,c,d}			
та	Ib	Nav1.5 (I _{Na}) inactivated-state (rapid dissociation)	Lidocaine, mexiletinec,	phenytoin				
I ^a	Ic	Nav1.5 open/inactivated state (slow dissociation)	Antazoline ^e , cibenzoline	e, flecainide ^f , pilsicainide	, propafenone ^f			
	Id	Late Na ⁺ current	Ranolazine					
Inhibit	tors and act	tivators of the autonomic nervous system						
	IIa	β-adrenoceptor antagonists	 β1 blockers: atenolol, bisoprolol, esmolol, landiolol, metoprolol, nebivolol β1 & β2 blockers: nadolol, propranolol β1, β2 & α1 blockers: carvedilol, labetalol 		lol, metoprolol,			
П	IIb	β-adrenoceptor agonists	Isoprenaline					
п	IIc	Muscarinic M2 receptor inhibitors	Atropine					
	IId	Vagal nerve/ACh release activators	Digoxin, digitoxin					
	IIe	Adenosine A1 receptor activators	Adenosine					
K+ cha	nnel block	ers and openers		_				
		Non-selective K ⁺ channel blockers	Amiodarone ^h , dronedar	one ^h , sotalol¹, bretylium				
	IIIa	Kv11.1 (hERG) K ⁺ channel blockers	Dofetilide, ibutilide ^j , nifekalant					
$\mathrm{III}^{\mathrm{f}}$		Kv1.5 (I _{Kur}) K ⁺ channel blockers	Vernakalant ^k					
	IIIb	Kir6.2 (K _{ATP}) K ⁺ channel openers	Nicorandil					
	IIIc	GIRK1 and GIRK4 (I _{KACh}) blockers	No approved medication	ns				

EHRA Classification of AADs in 2025: Part 2


Class	Subclass	Primary pharmacological target/action	Example of drugs
Ca2+ cl	hannel mod	ulators	
IV	IVa	Surface membrane non-selective & Cav1.2 and Cav1.3 channel mediated L-type Ca ²⁺ current (I _{CaL}) blockers	Bepridil, diltiazem, etripamil, verapamil
IV	IVb	Intracellular sarcoplasmic reticulum RyR2-Ca ²⁺ channel blockers	No approved medications
Mecha	nosensitive	channel blockers	
V		Transient receptor potential channel (TRPC3/TRPC6) blockers	No approved medications
Gap ju	nction cha	nnel blockers	
VI		Cx (Cx40, Cx43, Cx45) blockers	No approved medications
Upstre	am target i	nodulators	
VII		ACEI, ARNI, Mineralocorticoid receptor antagonists, Omega-3 fatty acids, Sacubitril, Statins	Enalapril, lisinopril, losartan, candesartan, spironolactone, eicosapentaenoic acid, docosahexaenoic acid, statins, etc.

Overview of Antiarrhythmic Effects of AADs

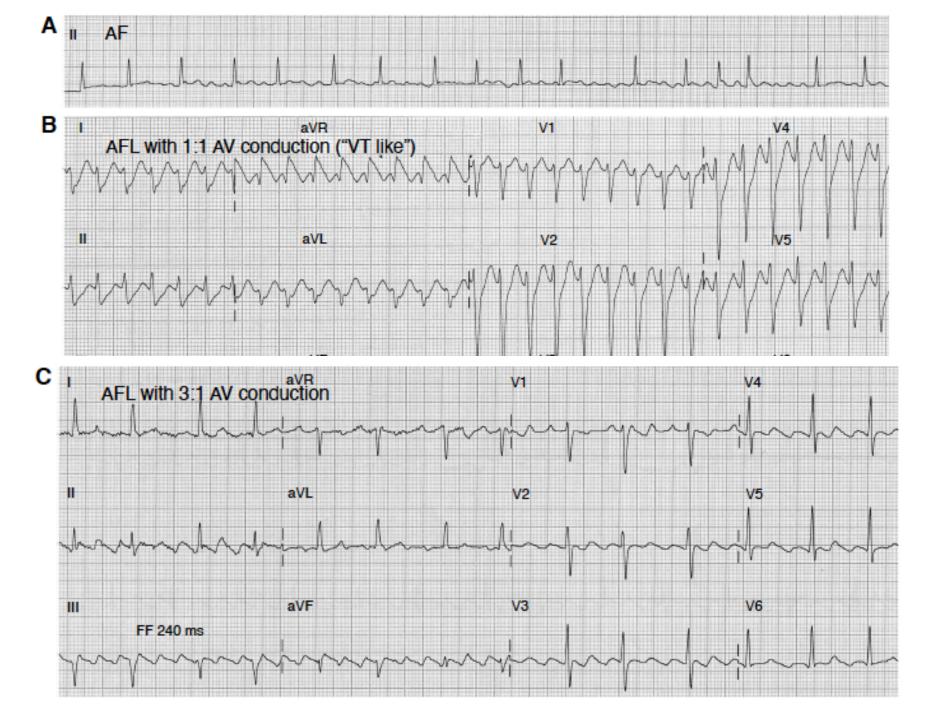
Heijman and Dobrev 2022. Arrhythmias. In: Kenakin, T. (Ed.), Comprehensive Pharmacology. Vol. 4, pp. 432-468. Elsevier.

How to avoid and manage proarrhythmia and toxicity?

Box 12 Risk factors associated with TdP

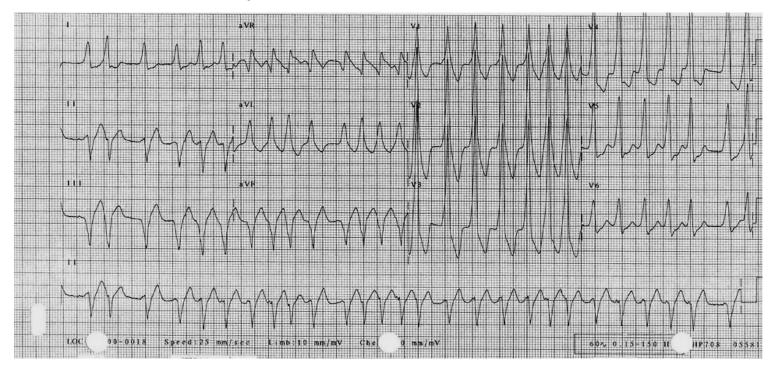
- Age > 65 years^a
- Female sex^a
- Congenital long QT syndrome (clinical or subclinical due to incomplete penetrance, either mono- or polygenetic)
- Personal history
 - History of syncope
 - History of TdP or significant bradycardia
 - Current nausea, vomiting, diarrhoea, laxative use
- Structural heart disease
 - Myocardial ischaemia
 - Heart failure
 - Left ventricular hypertrophy
- Systemic disorders
 - o Renal or liver failure
 - Hypo-thyroidism
 - Subarachnoid haemorrhage
 - o Hypothermia
- Electrolyte disorders
 - Hypokalaemia (<3.5 mmol/L)
 - Hypocalcaemia (<8.5 mmol/L)
 - Hypomagnesaemia (≤0.7 mg/dL)
- Drugs
 - QT-prolonging medications
 - o Diuretic therapy
 - Drug-drug interactions
- ECG signs (Box 13)

Abbreviations: ECG, electrocardiogram; TdP, torsades de pointes.

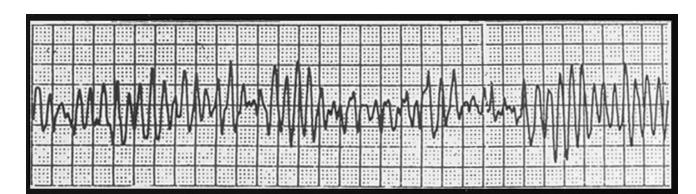

^aAge and sex alone are not sufficient to contraindicate certain AADs, though they are advised for heightened monitoring and control of other risk factors

Box 13 ECG signs indicative of risk for TdP

- Bradycardia (<60 bpm), including recent conversion from AF
- QTc >500 ms
- QT increase >60 ms from baseline
- T-wave alternans
- T- or U-wave distortion
- Ventricular ectopy and non-sustained VT triggered after a pause
 Abbreviations: AF, atrial fibrillation; ECG, electrocardiogram; TdP,


torsades de pointes; VT, ventricular tachycardia.

Merino J, et al. EHRA compendium on AAD. Europace 2025



THE IMPORTANCE OF DRUG PHARMACOKINETICS – PHARMACODYNAMIC KNOWLEDGE

AF with ventricular preexcitation

VF few minutes after amiodarone i.v.

1: G Ital Cardiol. 1986 Nov; 16(11): 969-74.

[Possible danger of rapid intravenous amiodarone in re-entry tachycardia in subjects with Wolff-Parkinson-White syndrome]

[Article in Italian]

Vitale P, De Stefano R, Auricchio A.

1: Int J Cardiol. 1987 Jul; 16(1):93-5.

Enhanced accessory pathway conduction following intravenous amiodarone in atrial fibrillation. A case report.

Schützenberger W, Leisch F, Gmeiner R.

Acceleration of ventricular rate by amiodarone in atrial fibrillation associated with the Wolff-Parkinson-White syndrome

BRYAN D SHEINMAN, TOM EVANS

BRITISH MEDICAL JOURNAL VOLUME 285 9 OCTOBER 1982

Jo. Perticone F, Cuda G, Spadea F, Pintaudi C, Tropea R. Malignant ventricular arrhythmia in the Wolff-Parkinson-White syndrome during amiodarone treatment. Clin Cardiol. 1987;10(8):477-480.

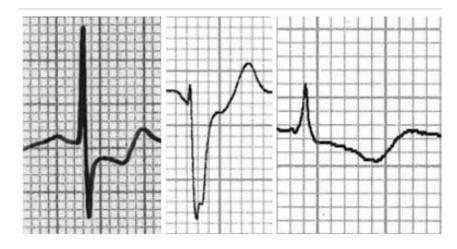
BRIEF COMMUNICATIONS

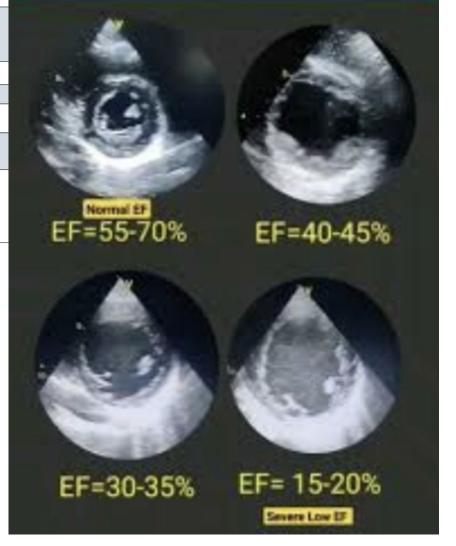
Ventricular fibrillation after intravenous amiodarone in Wolff-Parkinson-White syndrome with atrial fibrillation

Giuseppe Boriani, MD, Mauro Biffi, MD, Lorenzo Frabetti, MD, Umberto Azzolini, MD, Paolo Sabbatani, MD, Gabriele Bronzetti, MD, Alessandro Capucci, MD, and Bruno Magnani, MD Bologna, Italy

> Volume 131, Number 6 American Heart Journal 1996

... a verapamil-like effect with i.v. amiodarone!


Modified VW Class	AAD	Main indications	Not to be used/Main contraindication
0	Ivabradine	Inappropriate sinus tachycardia	AF termination
		AF (preexcitation) termination	BrS
IA	Ajmaline	MVT (no significant SHD) termination	HFrEF
	Quinidine	PVT (channelopathies) prevention	Long QT
	Procainamide	MVT (SHD) termination	HFrEF
	Disopyramide	AF (vagotonic) prevention	HFrEF
	Lidocaine	PVT/VF (ischaemia) termination	Bradycardia
IB	Mexiletine	TdP (LQTS 3) prevention	Bradycardia
	Phenytoin	JET (digitalis toxicity) termination	Bradycardi


		# 1		F		111
				$\pm HH$		
20000				+		
10000	10 20 00					
5 5 5 E	10000	\vdash				
	10000		1	1		+++
		^		- -√\		1
	1				\rightarrow	
						_
	1 福報報報					
				± 1111	1	+++
			V			

	Flecainide	AF (idiopathic) prevention/termination	BrS	
IC	Propafenone	WPW syndrome	SHD	
	Antazoline	AF (idiopathic) termination	Bradycardia SHD	
	Pilsicainide	AF (Idiopathic) termination	SHD	
ID	Ranolazine	AF prevention/termination	Long QT	
	β1 blockers (e.g. Bisoprolol, metoprolol)	AF/AFL rate control VT/PVCs (idiopathic)	Bradycardia	
НА	β1+β2 blockers (e.g. Nadolol, propranolol)	TdP (LQTS 1 & 2) prevention CPVT	Bradycardia	
пв	Isoprenaline	TdP (acquired LQTS) PVT (BrS)	CPVT	
IIC	Atropine	Sinus bradycardia	Inappropriate sinus tachycardia	
IID	Digoxin	AF/AFL rate control	Amyloidosis	
HE	Adenosine	PSVT termination	Asthma/COPD	

III	Amiodarone	AF/AFL (HFrEF) prevention/termination MVT (SHD) prevention/termination	Bradycardia
	Dronedarone	AF/AFL (SHD) prevention	Permanent AF HFrEF
	Dofetilide	AF/AFL (HFrEF) prevention	Long QT
	Ibutilide	AFL termination	Long QT
	Sotalol	MVT (SHD) prevention	CKD
	Vernakalant	AF (≤7 d) termination	Aortic Stenosis NYHA III/IV
IV	Verapamil	AF/AFL rate control	MVT (SHD)
	Diltiazem	VT (fascicular) prevention/termination	HFrEF

J Merino et al AAD Compendium EP Europace March 30 2025

AAD in pts with ICDs

Box 18 ICD-AAD interactions

- AADs may increase ICD pacing thresholds (see Table 21)
- AADs may alter DFT (see Table 21)
- AADs may aggravate bradycardia/AV block requiring more antibradycardia pacing
- AADs may slow AFL leading to 1:1 conduction or pacing
- AADs may slow VT rate and increase cycle length above the ICD tachycardia detection interval
- AADs may alter VT sensing by slowing the dV/dT and increasing the QRS duration
- AADs may cause pro-arrhythmia or incessant VT, potentially increasing the need for ICD interventions or rendering ICD therapy ineffective

Abbreviations: AAD, anti-arrhythmic drug; AFL, atrial flutter; AV, atrioventricular; DFT, defibrillation treshold; ICD, implantable cardioverter defibrillator; VT, ventricular tachycardia.

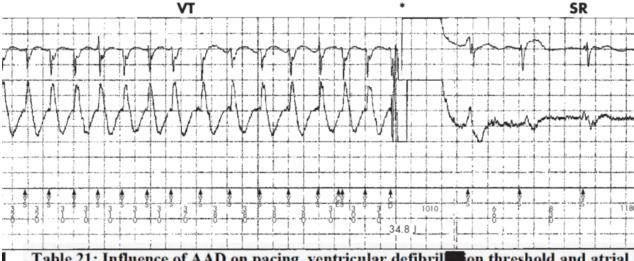


Table 21: Influence of AAD on pacing, ventricular defibril ion threshold and atrial cardioversion failure

AAD Class	AAD	Pacing Threshold	Ventricular Defibrillation Threshold	Atrial Defibrillation Threshold ^a
Ia	Procainamide Disopyramide	+	0	-
Ib	Lidocaine Mexiletine	0	+	
Ic	Flecainide	+	+	
IIa	β-blockers	0	0/-	
IIb	Isoprenaline	<u>-</u>	?	
	Amiodarone	0	+	-
III	Sotalol	0	-	
	Ibutilide			-
IV	Verapamil Diltiazem	0	+	

Table 8 Advisable tests at baseline and during follow-up for patients taking AADs

Evaluation	Test/parameter	Frequency	Toxicity/interaction evaluation
AADs other than am	iodarone		
ECG	Rhythm, PR, QRS, QTc	Baseline, shortly after initiation or dose adjustments (1–2 days for Class Ia, sotalol, dofetilide) and periodically (e.g. every 6 months)	QT interval prolongation (for Class Ia and III drugs) QRS duration prolongation (for Class Ic drugs) Pro-arrhythmic tachycardia (e.g. type Ic AFL), bradycardia or BBB/atrioventricular block
Echocardiography	Ventricular function	Baseline and updated if change suspected/risk	Systolic dysfunction (contraindication for Class Ic and IV AADs)
Blood test and serum electrolytes	GFR, K ⁺ , Mg ²⁺	Baseline, periodically (e.g. every 6 months)	Reduced drug elimination, Pro-arrhythmia risk
Liver function	ALT, AST, and total bilirubin	Baseline, periodically (e.g. every 6 months)	Reduced drug elimination
Exercise test	QRS at peak exercise, myocardial ischaemia	To consider for Class Ic at follow-up	QRS widening at exercise
Amiodarone			
ECG	Rhythm, PR, QRS, QTc	Baseline, steady state (1–3 months), annually	QT interval prolongation, pro-arrhythmic tachycardia (e.g. AFL), bradycardia, or atrioventricular block
Echocardiography	Ventricular function	Baseline, update if potential changes suspected	Systolic dysfunction
Serum electrolytes	K+, Mg ²⁺	Baseline, every 6 months	Pro-arrhythmia risk
Liver function	ALT, AST, and total bilirubin	Baseline, every 6 months	Hepatotoxicity
Thyroid function	TSH, free T4, and free T3	Baseline, every 6 months	Hypo-thyroidism or hyper-thyroidism
Pulmonary function	Chest X-ray and pulmonary function tests (diffusion capacity)	Baseline, annually	Interstitial lung disease
Visual function	Corneal slit-lamp exam and fundoscopic evaluation	Baseline, annually	Corneal microdeposits and, rarely, optic neuropathy

Abbreviations: AAD, anti-arrhythmic drug, AFL, atrial flutter; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BBB, bundle branch block; ECG, electrocardiogram; GFR, glomerular filtration rate; TSH, thyroid-stimulating hormone.

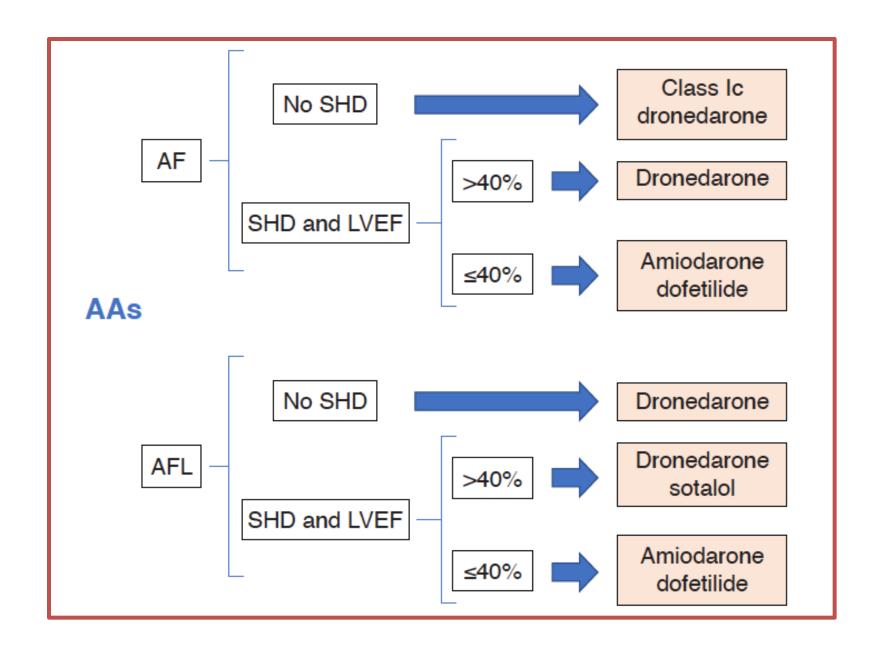
Merino J, et al. EHRA compendium on AAD. *Europace* 2025

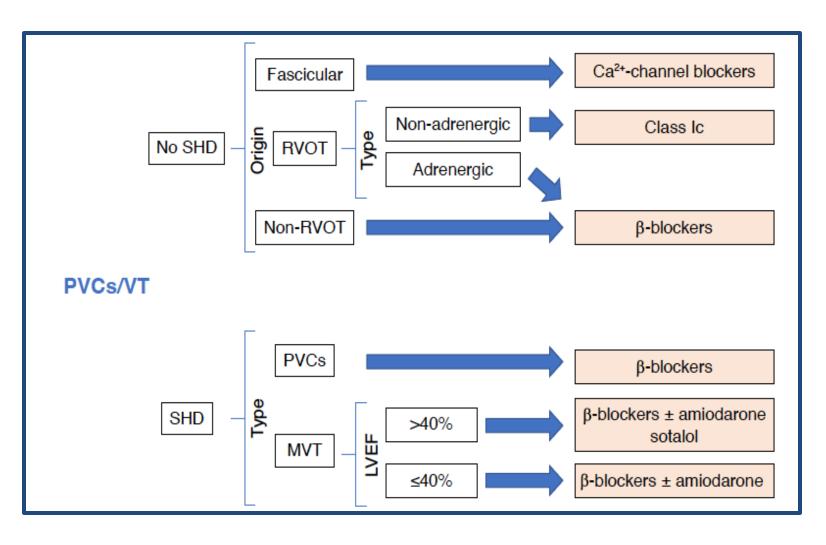
Table 10 Pro-arrhythmia risk and typical pro-arrhythmia forms of different AADs

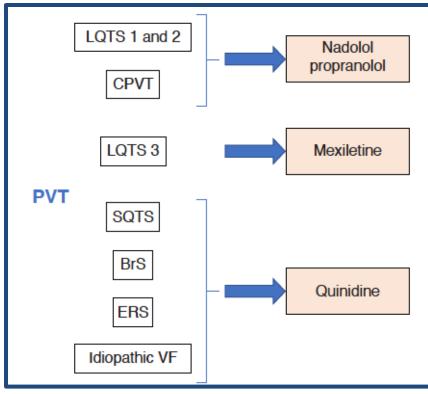
Class	Drug	Risk	Type of pro-arrhythmia
0	Ivabradine	Low	Bradycardia, AV block, AF
la	Quinidine	High	TdP
	Procainamide	Moderate	AV block, monomorphic VT ^a , TdP
	Disopyramide	Low	Bradycardia
lb	Mexiletine/ lidocaine	Low	Bradycardia, AV block
lc	Flecainide	Moderate	AFL ^b , monomorphic VT ^a , bradycardia ^c
	Propafenone	Moderate	AFL ^b , monomorphic VT ^a , Bradycardia ^c
ld	Ranolazine	Low	QT prolongation
lla	β-Blockers	Low	Bradycardia, AV block
llb	Isoprenaline	Low	Sinus tachycardia, PACs, PVCs, VT
llc	Atropine	Low	Sinus tachycardia, paradoxical AV block ^d
lld	Digoxin/ digitoxin	Moderate	AV block, junctional tachycardia, polymorphic VT, AT with AV block
lle	Adenosine	Moderate	Transient sinus bradycardia and AV block, AF, PACs, PVCs

III	Amiodarone	Low	Bradycardia, AFL ^b
	Dronedarone	Low ^e	Bradycardia
	Dofetilide	High	TdP
	Ibutilide	High	TdP
	Sotalol	High	TdP, bradycardia
	Vernakalant	Low	Sinus bradycardia, NSVT
IV	Verapamil	Low	Bradycardia, AV block
	Diltiazem	Low	Bradycardia, AV block

Abbreviations: AF, atrial fibrillation; AFL, atrial flutter; AT, atrial tachycardia; AV, atrioventricular; NSVT, non-sustained VT; PAC, premature atrial contraction; PVC, premature ventricular contraction; TdP, torsades de pointes; VT, ventricular tachycardia.

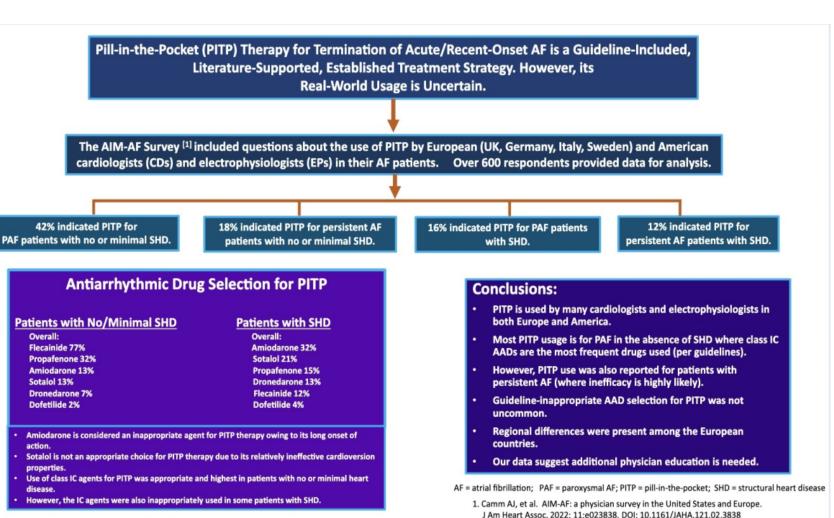

^aIn patients with structural heart disease.


^bIn patients with AF.


^cIn patients with sinus node dysfunction or AV conduction disorders.

^dWorsening of AV block on the ECG, such as a progression from second-degree AV block to AV block as atropine increases the sinus rate.

^eHigh when combined with digitalis, as dronedarone reduces the renal excretion of digitalis, amplifying its associated risks. The combination may also increase the likelihood of AV block and other pro-arrhythmic effects.


Real-world utilization of the pill-in-the-pocket method for terminating episodes of atrial fibrillation: data from the multinational Antiarrhythmic Interventions for Managing Atrial Fibrillation (AIM-AF) survey

James A. Reiffel ¹*, Carina Blomström-Lundqvist ^{2,3}, Giuseppe Boriani ⁴, Andreas Goette ⁵, Peter R. Kowey ^{6,7}, Jose L. Merino ^{8,9}, Jonathan P. Piccini ⁵Sanjeev Saksena ^{11,12}, and A. John Camm ¹³

Multinational survey of over 600 cardiologists, stratified from USA and Europe (cardiologists and electrophysiologists):

the APPROPRIATENESS of Pill in the Pocket use of AAD should improve!

Need for physician education!

Conclusion

Our findings highlight the frequent use of PITP and the need for further physician education about appropriate and optimal use of this strategy.

	During Atrial Fibrillation		During Sin	us Rhythm
	In-patient	Out patient	In-patient	Out patient
Class la			•	
Class Ib				^ *
Class Ic	*	^ **	*	^ **
Sotalol				^ ***
Dofetilide				
Dronedarone				
Ranolazine				
Amiodarone	*	^ **	*	^ **

¶: for type III long QT syndrome or PVCs

*: If uncertain sinus node function or risk for AFL conversion with 1:1 AV conduction

**: If known absence potential risk of sinus node dysfunction or AV conduction disorders

***: If no TdP risk markers and in sinus rhythm.

For women and patients over 65, sotalol should only be initiated in an outpatient setting with close monitoring, in the absence of other risk factors. Patients should be educated to recognise warning symptoms, avoid certain medications, and adhere to follow-up appointments. US FDA recommends hospitalizing all patients being initiated or re-initiated on sotalol for at least 3 days or until steady-state drug levels are achieved in a facility that can provide cardiac resuscitation and continuous ECG monitoring.

Box 10 Advantages, disadvantages, and advice for inpatient and outpatient initiation of AADs

In-hospital initiation

Advantages

- · Direct monitoring of drug effects on arrhythmia
- Faster drug loading (e.g. sotalol)
- Use of parenteral AADs if needed
- Immediate response to acute adverse effects:
 - o Sinus node/AV conduction disturbances
 - o Conversion to AFL with 1:1 conduction
 - o QT prolongation, TdP
 - o Heart failure, early drug intolerance, interactions
- Addresses medical–legal concerns for specific AADs Disadvantages
- Requires hospitalization (inconvenient, disruptive)
- · Higher costs and logistical challenges
- Long half-life drugs (e.g. amiodarone, digoxin) will not reach steady state
- Pro-arrhythmia risk may still occur later due to evolving conditions (e.g. electrolyte changes, new drug interactions, heart rate change)

Outpatient initiation

Advantages

- · Patient preference and practicality
- Lower cost; avoids hospitalization for most low-risk cases
- Safe for low-risk groups:
 - o Class Ic AADs, dronedarone, amiodarone in non-SHD patients
 - Sotalol in males in sinus rhythm with normal renal function, electrolytes, and no LV hypertrophy
- · Predictable drug interactions can be managed
- AFL with 1:1 conduction preventable with AV nodal blockers Disadvantages
- Rare but serious pro-arrhythmic events may go undetected and untreated

Abbreviations: AAD, anti-arrhythmic drug; AFL, atrial flutter; AV, atrioventricular; LV, left ventricle; TdP, torsades de pointes.

Box 11 Advice/requirements for in-hospital/outpatient initiation of AADs

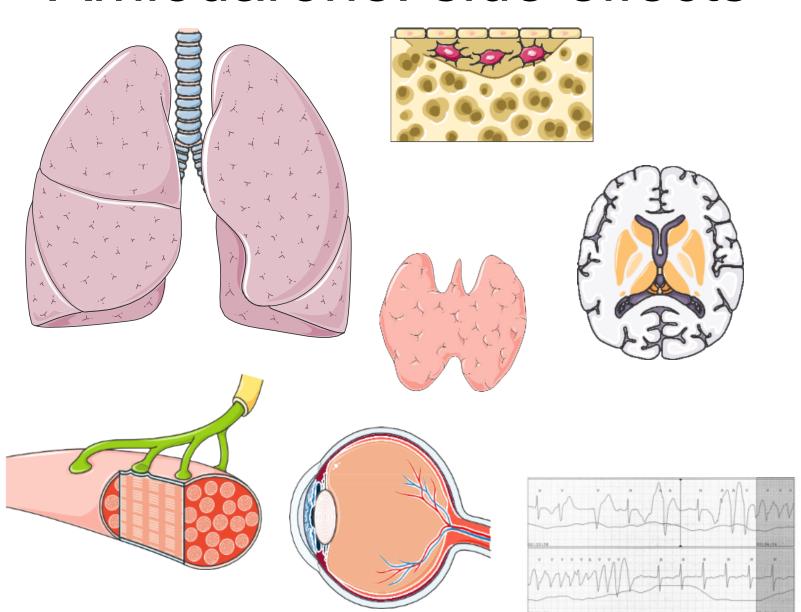
In-hospital initiation

- Class la: required for most drugs (some exceptions).
- Class III (dofetilide): must always be initiated and dose-adjusted in-hospital.
- Class III (Sotalol): in-hospital if QTc ≥450 ms (500 ms if intraventricular conduction delay), HR ≤60 b.p.m., or specific risk factors (e.g. SHD and renal dysfunction). See Box 12
- QT prolongation or unconfirmed sinus rhythm (risk of sick sinus syndrome or bradycardic pauses): require in-hospital initiation
- Pro-arrhythmic risk: high ventricular pro-arrhythmia risk (TdP, syncope, cardiac arrest) necessitates in-hospital monitoring

Outpatient initiation

- Class Ib (mexiletine): Allowed for non-tachycardic ventricular ectopy or type III long QT syndrome.
- Class Ic (fleainide/propafenone): Permitted in patients without SHD with ECG checks unless normal sinus rhythm has not been previously documented.
- Class Id (ranolazine): Safe for patients with or without SHD.
- Class III (dronedarone and amiodarone): permitted with ECG checks in low-risk patients.
- Patients with ICDs: ICDs provide protection against pro-arrhythmia, enabling outpatient initiation

Abbreviations: AADs, anti-arrhythmic drugs; ECG, electrocardiogram; HR, heart rate; ICD, implantable cardioverter defibrillator; QTc, corrected QT interval; SHD, structural heart disease.

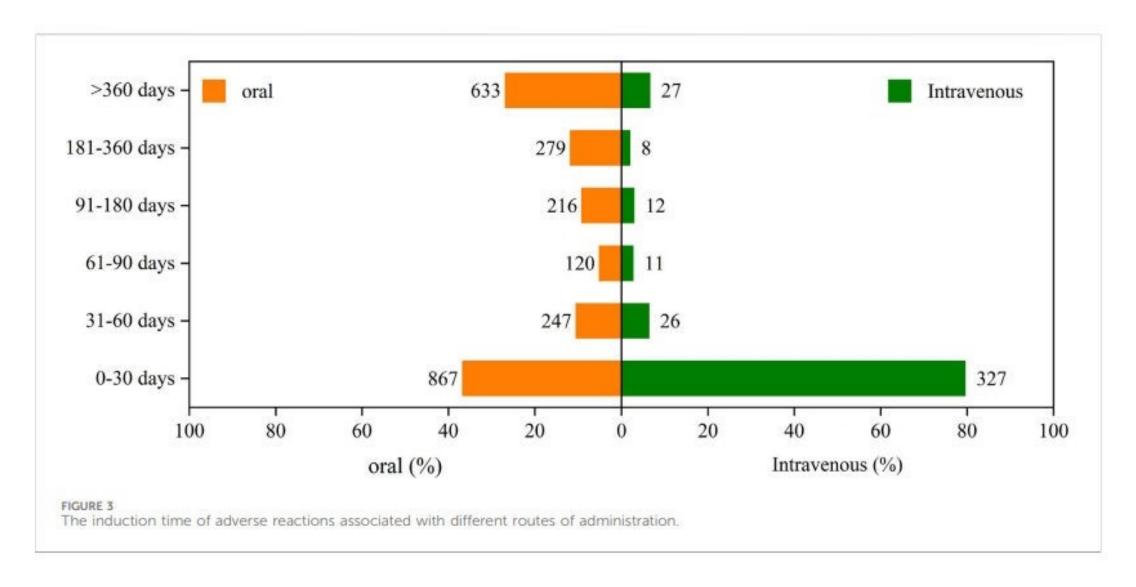

Box 2 Practical tips on using AADs

- To enhance safety of AAD use, it is <u>advised to involve patients</u> in AAD treatment:
 - Patients have to be taught about warning symptoms (progressive palpitations, unexpected dizzy spells or syncope, development of chest pain, dyspnoea, and recent-onset exercise intolerance)
 - Patients have to be taught about critical circumstances (to avoid concomitant QT-prolonging drugs, to report when a new drug is prescribed, the risk of developing hypokalaemia with diarrhoea and/or vomiting, excessive sweating during fever, dietary deficiencies, or the addition of diuretics)
 - Patients have to be taught about over-the-counter agents, including supplements and herbal remedies, and which may interact with AADs, potentially affecting their efficacy or increasing the risk of adverse effects. Patients have to promptly report any additions or discontinuations of such agents
 - These have to be repeated during regular follow-up visits
- Integrated nurse-driven care with experienced nurses supervised by the physician can substantially improve AAD management
- It is advisable to perform an exercise test on Class Ic drugs to rule out exercise-induced excessive QRS widening or ventricular tachycardia, if in doubt

- Flecainide or propafenone are not contraindicated in patients with a high cardiovascular risk profile (e.g. incidental Agatston score <400) in the absence of angina pectoris or with uncomplicated mild left ventricular hypertrophy (both in the absence of left ventricular scar tissue and dysfunction)
- CNS side effects of Class Ic drugs may be tackled by changing to an extended-release formulation
- If dronedarone is prescribed correctly, patients may greatly benefit from its often-overlooked pleiotropic effects, including amelioration of acute coronary syndrome, reduction of stroke rate and improving of survival. Dronedarone must always be taken with food to increase its oral bioavailability
- Class Ic drugs exert excess anti-arrhythmic effects during tachycardia (atrial or ventricular) and sotalol and amiodarone during bradycardia: therefore, observe ventricular Class Ic effects during infusion for tachycardia conversion or with exercise and ventricular Class III effects after cardioversion. Use dependency of dronedarone is unknown. Direct clinical manifestations of use dependency of AADs at the atrial level are not well known

Abbreviations: AAD, anti-arrhythmic drug; CNS, central nervous system.

Amiodarone: side effects



Adverse effect	Prevalence and/or annual incidence
Corneal microdeposits	> 90%
Optic neuropathy/neuritis	< 1%-2%
Hypothyroidism	5%-10%
Hyperthyroidism	0.9%-10%
Photosensitivity	25%-75%
Blue-gray skin discoloration	4%-9%
Pulmonary toxicity	1%-17%
Elevated liver enzyme levels	15%-30%
Hepatitis and cirrhosis	< 3%; 0.6%/yr.
Tremor and ataxia	3%-35%
Peripheral neuropathy	0.3%/yr.
Bradycardia and AV block	3%-5%
Torsades de Pointes	< 1%
Hypotension (IV formulation)	15–26%

Insomnia, memory disturbances and delirium have also been reported.

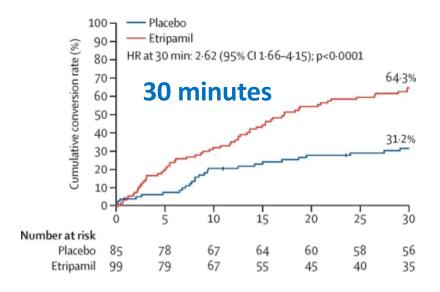
Trends Cardiovasc Med. 2019;29(5): 285–295. doi:10.1016/j.tcm.2018.09.005.

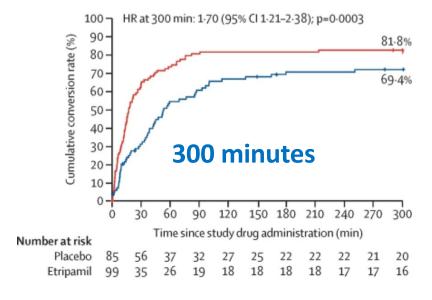
Amiodarone: side effects

Drug interactions: avoiding pitfalls

- AADs are often subject to significant drug—drug interactions, (see practical tables).
- One common pitfall is combining amiodarone with CYP3A4metabolized statins (e.g. atorvastatin and simvastatin), increasing risk of myopathy; favor other statins (e.g. rosuvastatin, pravastatin) instead.
- Interactions with digoxin, anticoagulants, and QT-prolonging drugs among others are also crucial to consider.

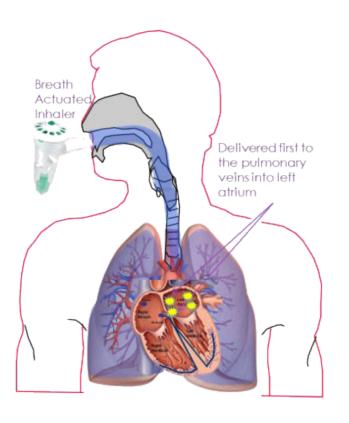
New Antiarrhythmic Drugs and Formulations

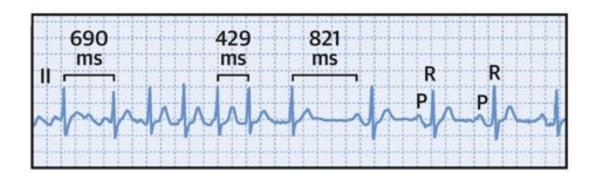


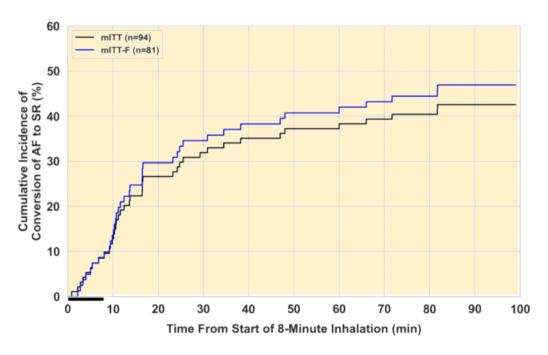

- Etripamil intranasal administration
- **№** Budiodarone short T½ multichannel blocker
- >>> Inhaled flecainide a new formulation
- **SK** channel inhibitors several molecules
- **Sulcardine** a multichannel blocker
- **Bucindolol** for the prevention of AF in heart failure
- **Doxapram** a TASK 1 (K2P 3.1) inhibitor
- **ED HDAC inhibitors, e.g., CKD-501/PKN-605**
- **Botulinum toxin** for epicardial fat pad injection
- Fixed dose oral combinations:- dronedarone and ranolazine, dofetilide and mexiletine
- Antisense oligo-nucleotides and monoclonal antibodies

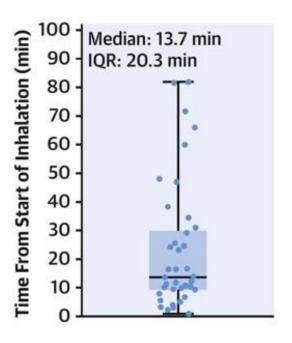
Etripamil: RAPID Trial Self-administered, Out-of-Hospital

- Nasal spray, short-acting drug, blood half- life <5'
- Multicentre, randomised, placebo-controlled, eventdriven trial
- Symptomatic ECG documented PSVT episodes (≥20')
- Random assignment to etripamil or placebo
- 70 mg etripamil or placebo and, if symptoms persisted beyond 10 min, a repeat dose
- 1º endpoint of time to conversion of PSVT to sinus rhythm for at least 30 s within 30 min of 1st dose
- 692 patients randomly assigned, 184 (99 from the etripamil group and 85 from the placebo group) selfadministered study drug



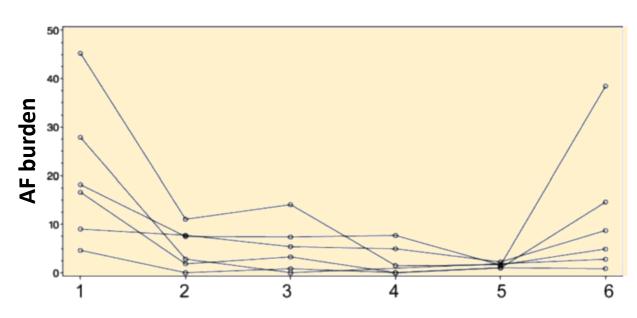



Inhaled Flecainide: INSTANT Study

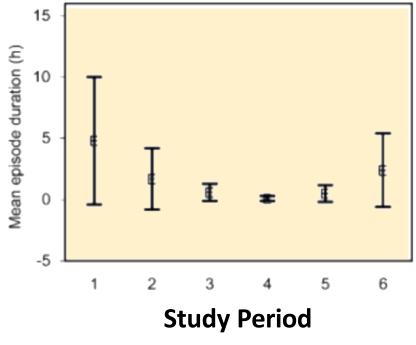

INhalation of Flecainide to Convert Recent Onset SympTomatic Atrial Fibrillation to siNus rhyThm

InRhythm

Budiodarone: an Effective Antiarrhythmic Drug


Budiodarone has a similar structure and electrophysiological effects to amiodarone

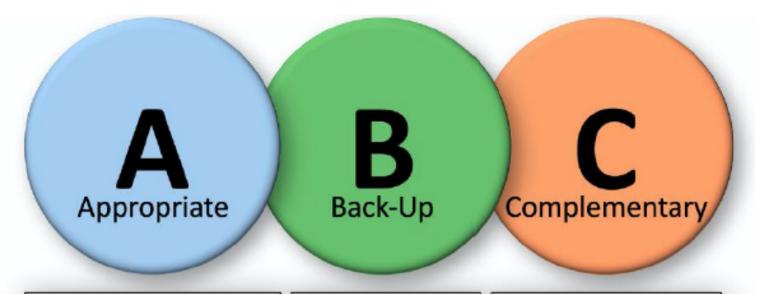
- Mixed ion channel with additional late sodium channel inhibition
- Ester group insertion reduces half life of budiodarone to 7 hours
- Phase 2 clinical trials show relief of AF symptoms, a reduction of AF burden and elimination of long episodes of uninterrupted atrial fibrillation
- Clinical trials show no change in ECG parameters,
 respiratory symptoms, hyperthyroidism or deaths on drug


Budiodarone reduces AF Burden in Phase 2a study

- Relative Risk Reduction of AF Burden: 86.8% vs. 22 44% with other antiarrhythmic drugs or 25% AF ablation
- Dose-related reduction of AF burden from 4.8 hours to 6 minutes

 AF episode duration fell from 4.8+/-5.2 hrs to 0.5+/-0.7 hrs

Baseline 200 mg bd 400 mg bd 600 mg bd 800mg bd Washout



Mean (95% CI) (SD) AF episode duration

Summary: Development of New Antiarrhythmic Drugs

- Selective Ion Channel Blockers: developed to selectively target atrial-specific ion channels, to avoid ventricular proarrhythmia or negative inotropic effects, e.g., SK channel inhibitors such as AP31969
- New Formulations: Improving the safety, speed or convenience of traditional antiarrhythmic drugs or similar new
 drugs to enhance their safety and reduce adverse effects, as with inhaled flecainide or intranasal etripamil
- Repurposing Existing Drugs: Using drugs targeting specific ion channels which are already developed (and approved) for another disease such as doxapram (respiratory stimulant) or botulinum toxin (cosmetic effects)
- **Drugs with Indirect Antiarrhythmic Effects:** agents which improve underlying disorders (upstream therapy), often with both direct (electro-physiological) and indirect (improved co-morbidity) effects e.g., **empagliflozin**
- Innovative Mechanisms: Novel approaches, such as HDAC6 inhibitors which prevent myofilament damage and prevent atrial remodelling
- New Multichannel Blockers: with different combination of ion channel blockade e.g., sulcardine
- Chemically Similar Molecules: to avoid unwanted effects whilst retaining antiarrhythmic effect e.g., budiodarone
 is a short half-life drug like amiodarone
- Fixed-Dose Combinations: Combining drugs with specific effects e.g., mexiletine plus dofetilide
- Genotype specific drugs: Such agent have antiarrhythmic effects only in patients with a specific genotype e.g., bucindolol

Antiarrhythmic drugs

Primary therapy

- Patient preference
- Transient arrhythmias (myocarditis, ischemia, etc.)
- Contraindication/unsuitability of ablation/CIEDs (surgical risk, advanced age, frailty, etc.)
- Acute arrhythmia termination (AF - i.v., PITP-, AFL, nQRS-T, wQRS-T, etc)
- Long-term prevention (Persistent AF, Non-outflowtract or fascicular VT, TdP/PVT channelopathies, etc.)

Primary therapy is not feasible / fails

- Recurrences despite life-style changes (E.g. Brugada S., LQTS, etc)
- Ablation failure or arrhythmia recurrences postablation

Adjuncts to primary therapy

- Peri-procedural adjunct:
 - · While waiting for ablation
 - Short-term after AF ablation (blanking period)
 - Pre- and post-VT ablation (substrate stabilization)
- Control of recurrent ICD shocks or ATP sequences
- Prevention of sinus tachycardia or AF with fast AV conduction to minimize ICD inappropriate shocks